2. Tensors 张量
张量是一种特殊的数据结构,与数组和矩阵非常相似。在 PyTorch 中,我们使用张量对模型的输入和输出以及模型的参数进行编码。
张量与NumPy 的ndarray 类似,不同之处在于张量可以在 GPU 或其他硬件加速器上运行。事实上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据(请参阅Bridge with NumPy )。张量还针对自动微分进行了优化(稍后我们将在Autograd部分中了解更多相关内容)。如果您熟悉 ndarrays,那么您就会熟悉 Tensor API。如果没有,那就跟随吧!
import torch
import numpy as np
2.1 Initializing a Tensor 初始化张量
张量可以通过多种方式初始化。看看下面的例子:
Directly from data 直接来自数据
张量可以直接从数据创建。数据类型是自动推断的。
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)
来自 NumPy 数组
张量可以从 NumPy 数组创建(反之亦然 - 请参阅Bridge with NumPy )。
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
从另一个张量:
新张量保留参数张量的属性(形状、数据类型),除非显式覆盖。
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
::: OUT
Ones Tensor:
tensor([[1, 1],
[1, 1]])
Random Tensor:
tensor([[0.8823, 0.9150],
[0.3829, 0.9593]])
:::
使用随机值或常数值: shape是张量维度的元组。在下面的函数中,它确定输出张量的维数。
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
::: OUT
Random Tensor:
tensor([[0.3904, 0.6009, 0.2566],
[0.7936, 0.9408, 0.1332]])
Ones Tensor:
tensor([[1., 1., 1.],
[1., 1., 1.]])
Zeros Tensor:
tensor([[0., 0., 0.],
[0., 0., 0.]])
:::
2.2 张量的属性
张量属性描述了它们的形状、数据类型以及存储它们的设备。
tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
Shape of tensor: torch.Size([3, 4]) Datatype of tensor: torch.float32 Device tensor is stored on: cpu
2.3 张量运算
这里全面描述了 100 多种张量运算,包括算术、线性代数、矩阵操作(转置、索引、切片)、采样等。 这些操作中的每一个都可以在 GPU 上运行(速度通常高于 CPU)。如果您使用的是 Colab,请转至运行时 > 更改运行时类型 > GPU 来分配 GPU。 默认情况下,张量是在 CPU 上创建的。我们需要使用.to方法显式地将张量移动到 GPU(在检查 GPU 可用性之后)。请记住,跨设备复制大张量在时间和内存方面可能会很昂贵!
# We move our tensor to the GPU if available
if torch.cuda.is_available():
tensor = tensor.to("cuda")
尝试列表中的一些操作。如果您熟悉 NumPy API,您会发现 Tensor API 使用起来非常简单。
标准的类似 numpy 的索引和切片:
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)
First row: tensor([1., 1., 1., 1.])
First column: tensor([1., 1., 1., 1.])
Last column: tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
连接张量您可以使用torch.cat沿给定维度连接一系列张量。另请参见torch.stack ,这是另一个与torch.cat略有不同的张量连接运算符。
t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])
算术运算
# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
# ``tensor.T`` returns the transpose of a tensor
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)
# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
单元素张量如果您有一个单元素张量,例如通过将张量的所有值聚合为一个值,您可以使用item()将其转换为 Python 数值:
agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
" 12.0 <class 'float'> "
就地运算将结果存储到操作数中的操作称为就地运算。它们由_后缀表示。例如: x.copy_(y) 、 x.t_()会更改x 。
print(f"{tensor} \n")
tensor.add_(5)
print(tensor)
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
tensor([[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.]])
就地操作可以节省一些内存,但在计算导数时可能会出现问题,因为历史记录会立即丢失。因此,不鼓励使用它们。
与 NumPy的转换
CPU 和 NumPy 数组上的张量可以共享其底层内存位置,并且更改其中一个将更改另一个。
张量到 NumPy 数组
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]
张量的变化反映在 NumPy 数组中。
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
NumPy 数组到张量
n = np.ones(5)
t = torch.from_numpy(n)
NumPy 数组中的变化反映在张量中。
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]